skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baughman, Notashia N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this comment, insights gained from density functional the- ory into the mechanism by which the Cu(I)-catalyzed boracar- boxylation of vinyl arenes occurs with specific focus on the CO2 insertion step are presented. Preliminary calculations indicated a potential non-covalent interaction between boron and CO2 in the carboxylation transition state, implicating cooperative CO2 activation. A study of boron Lewis acidity was conducted through substitution of sp2 mono-boron substituents. An inverse correlation between boron valence deficiency (BVD) and the enthalpic barrier of CO2 insertion into the β- borylbenzyl-Cu(I) bond was revealed, supporting Lewis acid/ base cooperativity between boron and the proximal oxygen of CO2 at the carboxylation insertion transition state. These find- ings suggest that future methodology development should consider strategic incorporation of similar Lewis acidic func- tionality to facilitate carboxylation of challenging substrates. 
    more » « less